Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, washington state.
نویسندگان
چکیده
Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), (137)Cs, and (99)Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to approximately 10(4) CFU g(-1), but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 microCi of (137)Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 microCi of (137)Cs g(-1)) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste.
منابع مشابه
Effect of temperature on Cs+ sorption and desorption in subsurface sediments at the Hanford Site, U.S.A.
The effects of temperature on Cs+ sorption and desorption were investigated in subsurface sediments from the U.S. Department of Energy Hanford Site. The site has been contaminated at several locations by the accidental leakage of high-level nuclear waste (HLW) containing 137Cs+. The high temperature of the self-boiling, leaked HLW fluid and the continuous decay of various radionuclides carried ...
متن کاملClay Mineralogical Transformations over Time in Hanford Sediments Reacted with Simulated Tank Waste
mineral dissolution and precipitation may occur. The effect of alkaline solutions on the transformation of Buried waste storage tanks at the USDOE Hanford Reservation clay minerals has been the subject of intensive research in Washington State have released solutions containing high concentrations of Na, OH, NO3, and Al into the vadose zone. When such (Cuadros and Linares, 1996; Bauer and Berge...
متن کاملSpectroscopic and diffraction study of uranium speciation in contaminated vadose zone sediments from the Hanford site, Washington state.
Contamination of vadose zone sediments under tank BX-102 at the Hanford site, Washington, resulted from the accidental release of 7-8 metric tons of uranium dissolved in caustic aqueous sludge in 1951. We have applied synchrotron-based X-ray spectroscopic and diffraction techniques to characterize the speciation of uranium in samples of these contaminated sediments. UIII-edge X-ray absorption f...
متن کاملGeochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments
In developing the Field Investigation Report for the Waste Management Area S-SX at the Hanford Site, Cs was the only gamma emitting radionuclide of concern (Knepp 2002). However, in WMA B-BX-BY, the spectral gamma logging data identify seven gamma emitting radionuclides, Cs, Sb, Eu, Eu, Co, U, and U (DOE-GJPO 1998). The geochemical behaviors of several of these radionuclides, Sb and the two eur...
متن کاملEffect of saline waste solution infiltration rates on uranium retention and spatial distribution in Hanford sediments.
The accidental overfilling of waste liquid from tank BX-102 at the Hanford Site in 1951 put about 10 t of U(VI) into the vadose zone. In order to understand the dominant geochemical reactions and transport processes that occurred during the initial infiltration and to help understand current spatial distribution, we simulated the waste liquid spilling event in laboratory sediment columns using ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 70 7 شماره
صفحات -
تاریخ انتشار 2004